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Abstract—Entity matching is an issue of interest in information
integration and data cleaning. Since the representations of
the same entity vary, it is often impossible to fully automate
the entity matching and require human inputs. However, to
guarantee high-quality entity matching, how to integrate human
resources into the entity matching while minimizing the cost
of human resources? In this paper, we propose BUBBLE, a
novel human-in-the-loop entity matching framework hybridiz-
ing Bayesian inference and crowdsourcing. To guarantee entity
matching quality, Bayesian inference is conducted to determine
whether the matching requires crowdsourcing. We show that we
can define Bayesian error rate for this problem. For optimization,
we use metric learning to select the candidate matching pairs
by nearest-neighbor search in the learned embedding space,
and we construct a k-nearest neighbor graph to avoid the
redundant matching. We applied BUBBLE to a bibliographic
data matching problem on the National Diet Library. The
experimental results show that BUBBLE can assign tasks to
humans with higher quality results compared to those of the same
number of task assignments to humans. The result also shows
that our optimization scheme is effective without sacrificing the
quality.

Index Terms—Entity Resolution, Human-in-the-loop, Task As-
signment

I. INTRODUCTION

Detection of duplicate data and data cleaning techniques
have attracted much attention in the field of big data.Entity
matching refers to identifying a set of records, in a database,
that refer to the same entity [1], [2] and has been studied
extensively in the past. Entity matching is essential for data
cleaning and integration of multiple databases, but it is often
subject to shaky or missing input during entity creation.
Moreover, a completely rule-based approach cannot realize
perfect matching for all entities [3], [4]. Therefore, human-in-
the-loop is a promising solution where workers can be experts
or crowd workers, and crowdsourcing-based approaches have
been proposed for entity matching [5]–[7]. However, when
the number of records in the database is large, it is critical to
identify what tasks should be done by crowd workers, because
it is unrealistic to assign to crowd workers all combinations of
records and determine whether they refer to the same entity.

Informal statement of the problem. Our research question
is whether we can develop a principled framework for human-
in-the-loop entity matching or not, which has theoretical
background to guarantee the entity matching quality while
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Fig. 1: Problem Setting : We generate a set of pair-wise entity
matching tasks and execute matching tasks using Bayesian in-
ference and human resources. If Bayesian inference answered
uncertainly, we assign the task to human.

minimizing the number of assignment to human. In this paper,
we answer this question positively, by introducing BUBBLE,
a novel, principled human-in-the-loop entity matching frame-
work hybridizing the Bayesian inference and crowdsourcing.

BUBBLE consists of two phases. The first phase involves
k-nearest neighbor graph construction with metric learning,
and the second phase involves iterative k-NN graph contrac-
tion with Bayesian inference and crowdsourcing. Figure 2
illustrates the steps of BUBBLE in more detail. First, we
embed the data from the database into the vector space via
metric learning, considering the similarity of data based on
their relationships. Further, we construct a k-nearest neighbor
graph connecting the top k nodes with the closest distances,
using each embedded data as a node. We perform edge scoring
for each edge based on the number of shared nodes and
identify the pair with the highest score. The edge pairs are
identified by Bayesian inference, and the pairs of records
that exceed a certain error rate are matched manually using
crowdsourcing.

We apply the proposed method to the problem of biblio-
graphic identification on the general catalog of the National
Diet Library to verify the effectiveness of the method. We
adopted the Siamese network structure as the metric learning
method, and metric learning was performed by minimizing the
loss function based on contrastive loss. For entity matching
by Bayesian inference, we created multiple probability distri-
butions based on each feature of the records and performed
multivariate Bayesian inference.

Experimental results show that the accuracy of matching
based on Bayesian inference was over 80%, and blocking
using metric learning could generate candidates for candidates
with a recall rate of approximately 90% by constructing a k-
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NN graph with k = 5.
We also showed that by increasing the error rate threshold

of the Bayesian inference model in our framework and actively
incorporating human into the task can improve the accuracy
compared to using only the Bayesian Inference model. Fur-
thermore, we showed that scoring based on the number of
shared nodes reduces the number of comparisons by randomly
selecting and integrating edges.

Contributions. In this paper, we propose a novel frame-
work, named BUBBLE, which tackles an entity matching
problem through a human and machine hybrid approach. Ex-
perimental results show that BUBBLE realizes almost 1.0 of
F-1 value under assigning only 30% of tasks to crowdsourcing
for the bibliographic data matching problem. Our paper makes
the following contributions:
• Accurate and quality-aware. The framework guarantees

matching quality by minimizing the error rate of Bayesian
inference.

• Non-redundant. KGB, a blocking method using distance
learning and k-nearest neighbor graph, reduces unneces-
sary matching and the number of comparisons.

• Cost effective task assignment. The method allows
scalable adjustment of the matching cost by a threshold
value according to the problem setting.

This paper is organized as follows. In Section 2, we discuss
related research, and in Section 3, we propose our novel
human-in-the-loop entity matching framework. In Section 4,
we present an entity matching experiment using the National
Diet Library’s General Catalog. Finally, we discuss the exper-
iments in Section 5 and conclude the paper in Section 6.

II. RELATED WORK

In this section, we discuss related works on (1) Active
learning, (2) Blocking methods for entity matching, and (3)
Human-in-the-loop entity matching.

A. Active learning

Active learning exists as a hybrid approach that combines
human intelligence into machine learning [8]. This is one of
the fields of machine learning, where instead of labeling all
data, develop a strategy of “which data should be labeled” to
increase the learning efficiency. Their goal is to improve the
recognition rate of machine learning models, and they gen-
erally do not consider quality guarantees or human resource
constraints. Our goal is to achieve perfect matching with
minimal human intervention, considering cost effectiveness.
Therefore, our research objective is different from the setting
of active learning.

B. Blocking methods for entity matching

Blocking can reduce the number of redundant matches in
large databases, by splitting similar data in advance. This is a
crucial technique in the context of entity matching [9]–[12].
This paper proposes an approach that utilizes the embedding
and k-NN graph construction as a blocking technique, reducing
redundant task pairs by iterative graph contraction.

C. Human-in-the-loop entity matching

There are several approaches that iteratively generates tasks
to human to realize entity matching [6], [13], [14]. Harada et
al. [15] proposed a bibliographic identification method using
crowdsourcing and achieved high quality results. Doan et al.
have developed two entity matching systems, Magellan [16]
and Corleone/Falcon [17]–[19]. These are crowdsourcing-
based entity matching tools that iteratively matches entities by
crowd worker while estimating the difficulty of the matching.
Also another human-in-the-loop system was developed [5].
That applies humans to the two steps of rule-based pruning
of matching candidates and cloud-based refinement of those
candidates.

However, this approach is not cost-effective when the
records in the database are very large since these approaches
only rely on human resources. Our main research objective
is to reduce the number of human tasks by performing
hybridization of machine-based and human-based matching
while minimizing the error rate.

III. PROPOSED FRAMEWORK: BUBBLE

In this section, we present the proposed framework BUB-
BLE. Algorithm 1 shows the process of the framework.

In BUBBLE, we first embed each data (a, id) from the
database S into the metric space. The embedding into the met-
ric space is done using the metric learning method described
in Section 4.2. Further, we construct a k-nearest neighbor
graph that connects the top k nodes with the closest distance
in which each embedded data as a node. A score is then
calculated for each node, and the nodes with the highest
scores are identified as candidate pairs to obtain a set of
identical data. If the nodes match, the graph is contracted by
merging the nodes; otherwise, the edges between the nodes
are cut off. The above operations are repeated until the nodes
become independent. By connecting nodes that are close to
each other in the embedding space, nodes that have similar
meanings are connected. This plays the role of blocking in
data integration. In addition, we used an edge scoring function
based on the number of overlapping neighboring nodes to
reduce the number of comparisons, and decisions were made
based on the highest value. Table I shows the notation of the
symbols used in this paper.

Node pairs are identified using Bayesian inference, which
is constructed by the binary classification model described in
Section 4.3. If the Bayesian Inference has an error rate of less
than τ , the identification is based on the result of the Bayesian
Inference. If the error rate is greater than τ , the identification is
done by the worker as a crowdsourcing task. Each component
of the algorithm is explained in the following sections.

A. Metric Learning

For metric learning, a function MΘ : S → Rn is learned
to map the data in the database into the embedding space,
where Θ is a parameter set of the mapping function of
metric learning. The basic idea of metric learning is that data
belonging to the same class should be closer together in the

2
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Fig. 2: Steps in BUBBLE

TABLE I: symbol definitions

symbol definition
S = {Si} Database
Si = (a, id) A data (a : features, id : number)
D ⊆ S × S A set of pairs of data matches
xi,j ∈ Rn Similarity measures between Si and Sj

MΘ : S → Rn Metric learning
Nearest(Si, k) Top k data that are close to i
Gk = (V, E) k-NN graph of the data
V ⊆ P(S) Node sets in k-NN graphs
E ⊆ V × V Edge sets in k-NN graphs

BI : V × V → [0, 1]2 Bayesian Inference
Human : V × V → 0, 1 Crowdsourcing Tasks

τ Threshold about error rate

embedding space, whereas data belonging to different classes
should be farther apart. Given a pair of matched data D, we
learn the metric learning parameter Θ by solving the following
optimization problem.

Θ = arg min
Θ

∑
(Si,Sj)∈D

Dist1(MΘ(Si),MΘ(Sj))

−
∑

(Si,Sj)/∈D

Dist2(MΘ(Si),MΘ(Sj)) (1)

Here, Dist1 and Dist2 represent the distances in the m-
dimensional embedding space.

B. Construction of a k-NN graph based on metric learning

We construct a k-nearest neighbor graph for the data points
in the embedding space obtained by metric learning. We define
a k-NN graph as follows.

Gk = (V, E) (2)

Here, V ⊆ P(S) represents the node set, and each node v ⊆ S
is a set of data. In the initial state of the k-NN graph, each
node v is a set consisting of only one data point. The edge set
E is initialized as follows.

E = {({Si}, {Sj}) | Sj ∈ Nearest(Si, k), Si ∈ S} (3)

Here, the edges are directed edges and Nearest(Si, k) ⊆ S
represents the top k data sets in the embedding space that are
close to the data Si. In the proposed framework, node pairs
that are determined to be identical are contracted in the k-NN
graph, and the edges of node pairs that are determined to be
non-identical are deleted from the graph. Constructing cliques
with k-neighborhood graphs allows for leak-free matching. In
this paper, we denote the contraction of a graph G by an edge
(vi, vj) as G \ (vi, vj).

3
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Algorithm 1 Framework of BUBBLE

Input: Database S, Pair D
Output: A set of nodes in the k-NN Graph V

1: Learn Metric MΘ

2: Construct k-NN Graph Gk = (V, E)
3: while E 6= ∅ do
4: (vi, vj)← arg max

(vi,vj)∈E
Score(vi, vj)

5: (P (Same | xi,j), P (Not-Same | xi,j))← BI(vi, vj)
6: if 1− P (Same | xi,j) ≤ τ then
7: D ← D ∪ {(vi, vj)}
8: G ← G \ {(vi, vj)}
9: else if 1− P (Not-Same | xi,j) ≤ τ then

10: E ← E \ {(vi, vj)}
11: else
12: Human score ← Human(vi, vj)
13: if Human score is 1 then
14: D ← D ∪ {(vi, vj)}
15: G ← G \ {(vi, vj)}
16: else
17: E ← E \ {(vi, vj)}
18: end if
19: end if
20: end while

C. KGB : k-nearest neighbor graph blocking

Fig. 3: Basic idea of KGB : When there are many sharing
nodes between an edge, (1) more edges are eliminated by
contracting the edge, and (2) the probability that two nodes
are the same entity is high.

In this section, we propose k-nearest neighbor graph block-
ing: KGB, which is a blocking method for data pairs to
reduce the number of comparisons. To minimize the number
of pairs to be compared, we calculate the priority among
the nodes to be identified. This makes it possible to realize
blocking that considers the features of the data. The basic idea
is that in a k-NN graph, the more neighbors two nodes share,
the more likely they are to refer to the same entity. Moreover,
the larger the number of edges that shrink when the two nodes
are merged, the smaller the number of data pairs that need to
be compared.

The score for an edge (vi, vj) is calculated as follows.

Score(vi, vj) = |N (vi) ∩N (vj)|, (4)

where N (vi) ⊆ S is the set of nodes with edges for node vi.
To minimize the number of pairs to be compared, we calculate
the priority between the nodes to be identified.

D. Matching based on Bayesian identification rules and task
assignment

We use Bayesian inference to match data. Bayesian infer-
ence refers to the computation of the conditional and marginal
distributions of interest from a given simultaneous distribution.
In this study, the multivariate Bayesian discriminant rule is
used to make matching decisions. This rule is calculated by
ensembling the multiple distance metrics of data, which are
the string similarities calculated from each metadata. We use
the following Bayesian discrimination rule to make matching
decisions.

P (Same | xi,j) (5)

=

∏n
l=1 p

(
x

(l)
i,j | Same

)
P (Same)∑

Class∈{Same, Not-Same}
∏n

l=1 p
(
x

(l)
i,j | Class

)
P (Class)

,

P (Not-Same | xi,j) (6)

=

∏n
l=1 p

(
x

(l)
i,j | Not-Same

)
P (Not-Same)∑

Class∈{Same, Not-Same}
∏n

l=1 p
(
x

(l)
i,j | Class

)
P (Class)

,

where xi,j =
(
x

(1)
i,j , ..., x

(n)
i,j

)>
∈ Rn is the vector of the

similarity measures between the nodes vi and vj .
The identification rule based on Bayes’ theorem minimizes

the error rate. When considering the classification problem
of two classes, i.e., Same,Not-Same, which is the problem
setting of this study if the class of agreement P (Same | xi,j)
is greater than that of disagreement P (Not-Same | xi,j), as
shown earlier, the observed data xi,j is classified into the class
Same, and if the opposite is true, it is classified into the class
Not-Same.

The probability of making a wrong decision based on
the identification rule ε(xi,j) is the smaller of the posterior
probabilities, i.e.

ε(xi,j) = min[P (Same | xi,j), P (Not-Same | xi,j)]. (7)

This is called the conditional Bayesian error rate. This is
expressed as the expected value of the conditional Bayesian
error rate and is calculated as follows:

ε∗ = E[ε(xi,j)] =

∫
RSame+RNot-Same

ε(xi,j)p(xi,j) dxi,j

(8)

=

∫
RNot-Same

p(xi,j | Same)P (Same) dxi,j

+

∫
RSame

p(xi,j | Not-Same)P (Not-Same) dxi,j , (9)

where RSame = {xi,j ∈ Rn | p(xi,j | Same)P (Same) >
p(xi,j | Not-Same)P (Not-Same)} and RNot-Same =

4
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Fig. 4: Conceptual illustration of discriminant bounds and
Bayesian error rates. Discriminant boundary Ω gives a min-
imal error rate of decision ε∗, which is shown as a yellow
area.

𝒙𝒊,𝒋
𝑺𝒂𝒎𝒆

𝑷 𝑵𝒐𝒕-𝑺𝒂𝒎𝒆 𝒙𝒊,𝒋)𝑷 𝑺𝒂𝒎𝒆 𝒙𝒊,𝒋)

𝝉

𝑵𝒐𝒕-𝑺𝒂𝒎𝒆

𝜴

𝑹𝒄𝒓𝒐𝒘𝒅(τ)

𝟏. 𝟎

𝟎. 𝟓

Fig. 5: Task Assignment Area: If the error rate exceeds τ ,
assign the task to human.

{xi,j ∈ Rn | p(xi,j | Same)P (Same) < p(xi,j |
Not-Same)P (Not-Same)}. This integral is shown in Fig-
ure 4. The Bayesian discriminant boundary is at Ω =
{xi,j ∈ Rn | p(xi,j | Same)P (Same)} = p(xi,j |
Not-Same)P (Not-Same)}}, and this integral corresponds
to the area of the light yellow area in Figure 4. As the
identification boundary shifts to Ω′, the Bayesian error rate
increases by the amount indicated by dark yellow in the figure.
This property ensures that the Bayesian identification rule
minimizes the error rate.

Based on Bayesian discriminant rules, it is possible to reject
a decision if the error rate is larger. The basic idea of the reject
rule is to reject a decision when the error rate for the class to
be identified is greater than or equal to the rejection threshold

τ . Lowering the rejection threshold τ increases the number
of rejected tasks and decreases the probability of incorrectly
recognizing a class. In this study, we assign this rejected
data as a task to crowdsourcing, which has high decision-
making capability. The region that the task are assigned to
crowdsourcing is defined as follows:

Rcrowd(τ) = {xi,j | ε(xi,j) ≥ τ}. (10)

The illustration of Rcrowd(τ) is shown in Figure 5. The num-
ber of tasks in crowdsourcing can be controlled by changing
the threshold value τ according to the problem setting. Thus,
Bayesian inference can always guarantee the best matching
quality because the error rate is minimized.

IV. EXPERIMENTS

In this section, we describe the experiments conducted to
validate the usefulness of the proposed method using real-
world data. We performed three types of evaluation exper-
iments: (1) initial recall of paired candidates by applying
KGB, (2) estimation of the distribution using the maximum
likelihood estimation, and (3) entity matching experiments.

A. Dataset

We consider the problem of bibliographic data matching in
the Japanese bibliographic database S created by the General
Catalogue of the National Diet Library. The bibliographic
database S is a mixture of bibliographic databases from
multiple libraries. This is synonymous with multiple databases
with a common schema.

Each bibliographic datum Si has the following features: (1)
title, (2) volume number, (3) author, (4) publisher, (5) ISBN,
(6) page number, and (7) size.

ISBNs that identify the bibliographic information of books1

are assigned unique numbers .
Therefore, bibliographic entries with the same ISBN are

normally considered to be the same. However, because acquir-
ing an ISBN is expensive, ISBNs for books that are no longer
in circulation are sometimes used for new books. In addition,
ISBNs have only been used since 1981, and books written
before the 80s do not have ISBNs. Thus, we use ISBNs for the
KGB described in Section 4.2 and the Bayesian identification
rules constructed in section 4.3 but not for the actual matching
problem.

B. Initial recall of paired candidates by applying KGB

We evaluated whether the graph obtained via KGB de-
scribed in Section 3.4 possesses the pairs of nodes to be
matched and whether the number of comparisons can be re-
duced. The comparison method is Naive method, that extracts
nodes randomly after constructing the KGB, and matches the
pairs of edges that the nodes have.

Metric learning for KGB. We describe the metric learning
performed to adopt the KGB. Metric learning is a method to
learn measures such as the similarity and distance between

1https://isbn.jpo.or.jp/

5
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TABLE II: Examples of bibliographic data pairs

Books Title Volume Number Author Publisher Page Size
S1 若おかみは小学生! 亜沙美,令丈ヒロ子 講談社 215p 18cm
S2 若おかみは小学生!：花の湯温泉ストーリー 1 [PART1] 亜沙美,令丈ヒロ子 講談社 215p 18cm

data. If a feature space that takes semantic distance into
account can be learned, unknown data can be handled robustly.

We adopt the Siamese network [20] as the metric learning
model MΘ. The loss function for learning the parameter Θ
is called Contrastive Loss [21]. The Contrastive Loss is
expressed as the following equation:

Loss =
1

2

 ∑
(Si,Sj)∈D

Disteuc(Si, Sj)
2

−
∑

(Si,Sj)/∈D

max (m−Disteuc(Si, Sj)) , 0)2

 , (11)

where m ∈ R and

Disteuc(Si, Sj) = ‖MΘ(Si)−MΘ(Sj)‖2. (12)

We used Keras2 to train the parameters.
The model is comprised of an input layer, all coupling

layers 1, dropout layer, all coupling layers 2, dropout layer, all
coupling layers 3, dropout layer, and output layer. For the all-
coupled layer and the output layer, we used the ReLu function
as the activation function and the Contrastive Loss as the
loss function.

Comparison of the frequency and recall. First, we show
the change in the number of comparisons of the proposed
method. Since the nodes with high Score share many edges,
we can reduce the number of comparisons by preferentially
identifying them. We also confirmed that the increase in the
number of comparisons is smaller than that of the naive
method when the number of nearest neighbor searches k is
increased.

Results. Figure 6 (a) and (b) show that the rate of edge
reduction decreased from the latter half of the matching
process. This indicates that the scores become uniform, and
the graph does not shrink further irrespective of which pairs
are matched.

Further, we discuss that the reproduction rate of pairs should
be matched. We make identification decisions on the edges of
the k-NN graph. Therefore, pairs of records to be matched
should occupy all edges of the k-NN graph. Figure 7 shows
the reproduction rate of the matching pairs when constructing
the k-NN graph. The reproduction rate indicates the number
of edges set in the k-NN graph included in D, which is the
set of matched pairs of data.

Einit = {(Si, Sj) | Sj ∈ Nearest(Si, k), Si ∈ S} (13)

Init Recall =
|D ∩ Einit|
|D|

(14)

Experiments with several datasets confirmed that the repro-

2https://keras.io/ja/
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Fig. 6: The number of comparisons plotted against the number
of edges and the number of nearest neighbors k : (a) the
number of comparisons was reduced compared to the naive
method, where nodes were selected randomly by contracting
the graph from the node with the highest Score. (b) When
the number of nearest neighbors k was increased, there was
a significant difference in the cumulative number of compar-
isons.

duction rate reaches approximately 90% for k = 5. This
indicates that appropriate data embedding can be obtained
by metric learning, and the number of comparisons can be
reduced by setting the value of k appropriately. We showed
KGB to reduce the number of comparisons of matching tasks.
By metric learning and k-NN graph construction, the number
of comparisons is significantly reduced while maintaining
the reproducibility of the matching candidates, compared to
the non-blocking method that compares all combinations.
Furthermore, by preferentially matching node pairs with many
shared edges, we can achieve entity matching with an even
smaller number of comparisons.

6
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Fig. 7: Initial Recall of identified pairs when constructing
k-NN graphs: The larger k is, the higher the Initial Recall
of the pairs to be identified.

C. Generating probability distributions by maximum likeli-
hood estimation

In this section, we describe the generation of probability
distributions using maximum likelihood estimation, which cor-
responds to the classed conditional probability

∏n
l=1 p(x

(l)
i,j |

Same),
∏n
l=1 p(x

(l)
i,j | Not-Same) of Bayes’ theorem de-

scribed in Section 3.1. To estimate the class using Bayes’
discriminant rule, we use (1) variance representation, (2) Jaro-
Winkler [22] distance, (3) Levenshtein [23] distance, and (4)
SequenceMatcher distance 3. Each of the distance metrics
represents each dimension xi,j . We performed multivariate
Bayesian estimation by creating probability distributions for
them. The conditional probabilities with classes in the entity
matching problem has Same and Not-Same. We used the
ISBNs of the bibliographic data to compute the similarity
between pairs whose ISBNs match and mismatched pairs
whose ISBNs do not match and satisfies following condition:

1.0 > 1.0−Distance(Si, Sj) ≥ P, (15)

Here, Distance(Si, Sj) is a difference measure and we used
the Python standard library difflib. In this experiment we set
P = 0.6.

The bibliographic data x
(l)
i,j (l ∈ {1, 2, 3, 4} are sampled

independently from the true distribution. In this study, we fit
the probability density function to the sampled data distri-
bution p(x

(l)
i,j | Θl), where Θl are a set of parameters. The

parameters of the probability density functions Θ are learned
by maximum likelihood estimation from the obtained pairs of
data D. The optimization problem is

Θ∗l = arg max
Θl

∏
(i,j)∈D

p
(
x

(l)
i,j | Θl

)
. (16)

In this study, we used the Python library SciPy4 to perform
maximum likelihood estimation. The estimation was done by

3https://docs.python. org/en/3/library/difflib.html
4https://www.scipy.org/index.html

fitting a gamma distribution to each distance. The probability
density function of gamma is

p(x; a, b) =
βαxα−1e−βx

Γ(α)
. (17)

In this study, We constructed a multivariate Bayesian estima-
tion model that combines these factors and applied it to entity
matching. Here, the class conditional probabilities are as-
sumed to be conditionally independent. The prior distribution
P (Same), P (Not-Same) is considered to be an uninformed
prior. Figures 8 shows the histogram of each distance and their
fitted probability distribution in the dataset. As we can see,
each distribution for the same and not-same pairs is different,
enabling us to make the Bayesian inference-based classifier.

D. Entity matching experiment

We conducted an experiment of matching bibliographic data
to see whether BUBBLE can choose appropriate human tasks
for the quality. In the experiment, we randomly selected 500
bibliographic data and constructed a k-NN graph with the
number of nearest neighbors k set to 5. The following shows
the number of tasks and the F-1 measure of the proposed
method when the threshold of the rejected area τ is changed.
It is assumed here that crowdsourcing decisions always return
correct answers. The comparison method is Random method,
that randomly assigns matching tasks to humans.

Result. Figure 9 shows that Bayesian inference can be used
to assign tasks to humans that are likely to be misjudged.
We prioritized the matching tasks, and we crowdsourced
approximately 30% of the total matching tasks; consequently,
we achieved an overall matching accuracy of almost 1.0. By
reducing the size of τ , we were able to encourage human inter-
vention and improve the matching accuracy of the framework.
Figure 10 shows the comparison of the matching accuracy
between the random task assignment and the BUBBLE error
rate based assignment method. In our proposed method, we
show that by assigning matching tasks to human based on the
Bayesian error rate, we can obtain high matching accuracy
with a smaller number of task assignments. In addition, since
the F-1 score increases by a large percentage, we can conclude
that the matching ranking by KGB is appropriate.
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Fig. 8: Probability distribution for each of distance metrics: Each figure shows the histogram of data that is Same and
Not-Same and the probability density functions p(x(l)

i,j | Same) and p(x(l)
i,j | Not-Same), respectively.
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racy.
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V. CONCLUSION

We proposed a human and machine hybrid entity match-
ing framework BUBBLE, based on Bayesian inference and
crowdsourcing and applied it to a real-world entity match-
ing problem. We explained that BUBBLE uses graph the-
ory as a background for acquiring matching candidates and
that Bayesian discriminative rules guarantee the accuracy of
matching due to the minimum error rate. The results of the
experiments can be summarized as follows. (1) Blocking
with KGB reduces the number of comparisons compared to
naive methods. (2) Multivariate Bayesian estimation using
the features of metadata as probability distributions realizes
almost 1.0 of F-1 value under assigning only 30% of tasks
to crowdsourcing. (3) Reject-based task assignment shows
that assigning non-redundant tasks to humans improves the
matching ability of the framework.

We are considering incorporating the following in BUB-
BLE in future studies. (1) Consideration of loss. (2) In the
loop for Bayesian inference models. (3) Task assignment
considering spam workers. To consider the loss, there is a
difference in the risk obtained by the domain between agree-
ment and disagreement. Therefore, it is necessary to provide
an appropriate loss in matching. Regarding the Bayesian infer-
ence models, we will feed back the results of crowdsourcing
decisions to the conditional probabilities. We plan to reduce
the number of tasks assigned to humans by further improving
the accuracy of inference through human judgment. For task
assignment to spammer, in this experiment, we assumed that
the crowdsourced workers always behave correctly, but in an
actual crowdsourcing environment, there may be spammer or
human who make wrong decisions. In the future, we plan to
construct a framework that is robust against such uncertain
behavior of human.
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